Study on Anti-Friction Mechanism of Canna-Leaf Biomimetic Micro-Textured Fruit Tree

Author:

Sun Jianfeng,Li Bo,Xing Kaifeng,Liu Zhu,Yang Zhou

Abstract

Fruit tree pruning is an important part of orchard management. In this paper, the force on and the wear of the pruner in the pruning process were studied with a canna-leaf biomimetic convex-hull pruner. The pruner was formed by laser etching technology. The influence of laser power and scanning speed on the geometric dimensioning of the micro texture was analyzed. The shear force calculation model was built to obtain the positive pressure load during the pruning process, while the model accuracy was verified in the static pressure shear test, and the wear mechanism was analyzed in the wear test. The real pruning process was simulated to compare the worn areas of the textured and non-textured pruners and the number of cuts in fixed wear condition, for proving the wear reduction characteristics of the micro-textured pruner. The results show that: the optimal forming parameters are 70 W 1.6 mm/s (10 mm-diameter branches), 80 W 2.4 mm/s (15 mm-diameter branches) and 80 W 1.6 mm/s (20 mm-diameter branches), and the convex hull spacing is 300 μm. Laser power affects the depth and width of the texture, while scanning speed affects the depth of the texture. The positive pressure on the pruner is proportional to the modulus of elasticity, moment of inertia, cut depth, and bevel angle, whilst it is inversely proportional to the distance from the fixed point of the blade to the positive pressure. The wear test shows that the anti-wear performance of the textured pruner is not obvious at the load of 300 g, while the anti-wear performance of the textured pruner is significant at the loads of 1000 g and 2000 g. The wear mechanism shifts from the abrasive wear in the early stage to more complex oxidative wear and adhesive wear. The actual shear test shows that the textured pruner wears less than the non-textured pruner and enters the stable shear faster.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3