In-Vitro Plant Growth Promotion of Rhizobium Strains Isolated from Lentil Root Nodules under Abiotic Stresses

Author:

Sijilmassi BadreddineORCID,Filali-Maltouf AbdelkarimORCID,Fahde Sara,Ennahli Youness,Boughribil Said,Kumar ShivORCID,Amri Ahmed

Abstract

Plant growth-promoting rhizobia are known to improve crop performance by multiple mechanisms. However, the interaction between host plants and Rhizobium strains is highly influenced by growing conditions, e.g., heat, cold, drought, soil salinity, nutrient scarcity, etc. The present study was undertaken to assess the use of Rhizobium as plant growth promoters under abiotic stress conditions. Fifteen Rhizobium strains isolated from lentil root nodules were tested for phosphate solubilization activity (PSA) and phytohormones production under salt and drought conditions. The results showed that 15 Rhizobium strains were significant phosphate solubilizers, and indole acedic acid (IAA) and gibberellic acid (GA3) producers based on least significant difference (LSD) analysis (p ≤ 0.05). The highest rate of PSA was attributed to three strains namely, 1145N5, 1159N11, and 1159N32 with a range of 144.6 to 205.6 P2O5 (µg/mL). The highest IAA production was recorded in the strain 686N5 with 57.68 ± 4.25 µg/mL as compared to 50.8667 ± 1.41 µg/mL and 37.32 ± 12.59 µg/mL for Rhizobium tropici CIAT 899 and Azospirillum brasilense DSM-1690, respectively. Strain 318N2111 produced 329.24 ± 7.84 µg/mL of GA3 as against 259.84 ± 25.55 µg/mL for A. brasilense DSM-1690. R. tropici CIAT 899 showed tolerance to salt (5% NaCl) and drought (ψ = −2.6 MPa) stress, whereas strain 686N5 showed an extremely high level of salt-tolerance (5% NaCl) and moderate level of drought tolerance (ψ = −0.75 MPa). These results indicate different pathways for drought and salt tolerance mechanisms. The assessment of plant growth promoting (PGP) activities of Rhizobium showed differences between bacterial viability and bacterial PGP activity in terms of abiotic stress tolerance where bacterial PGP activity is interrupted before reaching the bacterial tolerance threshold. These results integrate a new concept of PGPR screening based on PGP activity under abiotic stress.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3