UAV-Supported Route Planning for UGVs in Semi-Deterministic Agricultural Environments

Author:

Katikaridis Dimitrios,Moysiadis VasileiosORCID,Tsolakis NaoumORCID,Busato Patrizia,Kateris DimitriosORCID,Pearson SimonORCID,Sørensen Claus Grøn,Bochtis DionysisORCID

Abstract

Automated agricultural operations must be planned and organized to reduce risk and failure potential while optimizing productivity and efficiency. However, the diversity of natural outdoor environments and the varied data types and volumes required to represent an agricultural setting comprise critical challenges for the deployment of fully automated agricultural operations. In this regard, this study develops an integrated system for enabling an unmanned aerial vehicle (UAV) supported route planning system for unmanned ground vehicles (UGVs) in the semi-structured environment of orchards. The research focus is on the underpinning planning system components (i.e., world representation or map generation or perception and path planning). In particular, the system comprises a digital platform that receives as input a geotagged depiction of an orchard, which is obtained by a UAV. The pre-processed data define the agri-field’s tracks that are transformed into a grid-based map capturing accessible areas. The grid map is then used to generate a topological path planning solution. Subsequently, the solution is translated into a sequence of coordinates that define the calculated optimal path for the UGV to traverse. The applicability of the developed system was validated in routing scenarios in a walnuts’ orchard using a UGV. The contribution of the proposed system entails noise reduction techniques for the accurate representation of a semi-deterministic agricultural environment for enabling accuracy in the route planning of utilized automated machinery.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3