Hormone Profiles and Antioxidant Activity of Cultivated and Wild Tomato Seedlings under Low-Temperature Stress

Author:

Heidari ParvizORCID,Reza Amerian Mohammad,Barcaccia GianniORCID

Abstract

Low temperature is a major limiting factor for the growth and reproduction of some plant species, such as tomato. So far, few studies have been conducted on the effects of low temperature, and the mechanisms of plants’ response to this type of stress is not fully clear. In the current study, the effects of low, nonfreezing temperature (10 °C for three days) on the hormone content, antioxidant activity, and expression patterns of cold-related genes in the leaves of cold-tolerant species (Solanum habrochaites Accession ‘LA1777′) and cold-susceptible species (Solanum lycopersicum cultivar ‘Moneymaker’) were investigated. Low temperature increased the abscisic acid (ABA) content in both tomato species, while the content of zeatin-type cytokinins (ZT) increased in the cold-tolerant species. However, the content of indole-3-acetic acid (IAA) and gibberellic acid (GA) reduced in response to low temperature in susceptible species. Accordingly, cytokinin (CK) is identified as an important hormone associated with low-temperature stress in tomato. In addition, our results indicate that the C-repeat/DRE binding factor 1 (CBF1) gene is less induced in response to low temperature in tomato, although transcription of the inducer of CBF expression 1 (ICE1) gene was upregulated under low temperature in both tomato species. It seems that ICE1 may modulate cold-regulated (COR) genes in a CBF-independent way. In addition, in response to low temperature, the malondialdehyde (MDA) level and membrane stability index (MSI) increased in the susceptible species, indicating that low temperature induces oxidative stress. Additionally, we found that glutathione peroxidase is highly involved in reactive oxygen species (ROS) scavenging induced by low temperature, and antioxidants are more induced in tolerant species. Overall, our results suggest that sub-optimal temperatures promote oxidative stress in tomato and CK is introduced as a factor related to the response to low temperature that requires deeper attention in future breeding programs of tomato.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3