Slight Shading Stress at Seedling Stage Does not Reduce Lignin Biosynthesis or Affect Lodging Resistance of Soybean Stems

Author:

Wen BingxiaoORCID,Zhang Yi,Hussain SajadORCID,Wang Shan,Zhang Xiaowen,Yang Jiayue,Xu Mei,Qin Sisi,Yang Wenyu,Liu Weiguo

Abstract

Shade is widespread in agricultural production and affects lignin biosynthesis and lodging resistance of crops. We explored the effects of shade intensity on lignin biosynthesis and lodging resistance at the physiological and molecular levels in two soybean cultivars (Nandou12 and E93) with different shade tolerance under four progressively severe shade treatments, S0–S3 (S0: no shade, S1: slight shade, S2: moderate shade, S3: heavy shade). Our results showed no significant difference in breaking strength of the two cultivars under S1 and S0 treatments, with no prominent decrease in the lodging resistance index. The activity of lignin biosynthesis rate-limiting enzymes phenylalanine ammonia-lyase (PAL), peroxidase and cinnamyl alcohol dehydrogenase (CAD), which were considerably related to the two lodging resistance indexes above, was not significantly decreased by slight shade, while 4-coumaric acid ligase (4CL) activity was increased. Most genes involved in lignin biosynthesis were not significantly down-regulated by slight shade (S1) compared to S0, while p-coumarate 3-hydroxylase (C3H), 4-coumaric acid ligase (4CL) and laccase (LAC) genes were upregulated. Under heavy shade (S3), enzyme activity and gene expression associated with lignin synthesis in both soybean cultivars were strongly inhibited; moreover, stem mechanical strength and lodging resistance were remarkably decreased compared with those under S0. These physiological and molecular changes suggested that applicable shade levels do not significantly affect the mechanical strength and lodging resistance of soybean stem. Exploiting the lodging resistance potential of existing soybean cultivars was an effective and efficient way to address yield reduction caused by lodging in intercropped soybeans.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3