Yield, Nutritional Composition, and In Vitro Ruminal Digestibility of Conventional and Brown Midrib (BMR) Corn for Silage as Affected by Planting Population and Harvest Maturity

Author:

Peña Omar Manuel1,Velasquez Cesar1,Ferreira Gonzalo2ORCID,Aguerre Matias Jose1ORCID

Affiliation:

1. Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA

2. School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

The objective of this study was to evaluate the effects of corn-planting population, using two conventional (Conv) and two brown-midrib (BMR) hybrids, and maturity stage at harvest on forage dry-matter (DM) yield, silage quality, and in-vitro fiber digestibility. The study was conducted in two fields with contrasting production potential, where both corn hybrids were planted at a theoretical planting population of 59,000, 79,000, and 99,000 seeds/ha. Corn was harvested at the early-dent (early) or 2/3 milk-line (late) maturity stage. An interaction between planting population and field existed for biomass yield. We observed a consistent increase in forage yield with increased planting population only in the field of higher production potential. Corn hybrids that contained the BMR trait did not penalize yield but had a consistently higher digestibility of neutral detergent fiber (aNDFom) compared to conventional hybrids. Except for starch concentration, no interaction existed between planting population and maturity for forage yield, fiber digestibility, and nutritional composition. A response to increasing planting population on starch concentration was observed only when corn was harvested at the L = late maturity stage. In conclusion, increasing corn-planting population may increase forage yield, but such an effect may depend on the soil’s growing potential. In addition, planting population had a negligible effect on the nutritional composition and fiber digestibility of corn silage and was minimally affected by the maturity stage at harvest.

Funder

multistate project USDA-NIFA

USDA-NIFA Multistate Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3