CO2 Emissions from Soil Under Fodder Maize Cultivation

Author:

Sosulski TomaszORCID,Szymańska Magdalena,Szara Ewa

Abstract

The paper presents the results of a study aimed at assessing the total respiration of arable soil under maize fodder cultivation in the climate conditions of Central Poland over the dry growing season. The study was carried out between 22 April and 30 September 2012 (24 test dates). Total CO2-C emissions from the soil were measured in situ by means of the chamber method. The measured total CO2-C fluxes showed a high variability over the study period (3.63–302.31, mean 84.58 mg CO2-C m−2 h−1). Cumulative CO2-C soil emissions reached 3214.9 kg CO2-C ha−1 during the maize growing season and 106.8 kg CO2-C ha−1 in the post-harvest month. In the specific weather conditions of the year of the study (summer drought), CO2-C fluxes from the soil were stronger correlated with the soil NO3−-N content than with atmospheric temperature and soil moisture. The relationship between total soil CO2-C emissions and soil NH4+-N content was described by a negative correlation. Intensive CO2-C fluxes from the soil coincided with rapid maize development stages (8–15 leaf stage) and, to a lower extent, with earlier leave development stages. Total CO2-C emissions during the emergence, pre-reproductive and reproductive maize stages and, particularly, in the post-harvest period, were lower. Intensive nitrification of the soil, in dry season such as the one of 2012, could serve as an indicator of high CO2-C emissions from the soil. However, further studies are needed to confirm this finding. Decomposers probably used soil NH4+-N in the organic matter degradation process intensively and could compete with nitrifiers and maize roots for this soil source of mineral nitrogen.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference36 articles.

1. Worldwide Production of Grain in 2018https://www.statista.com/statistics/263977/world-grain-production-by-type/

2. Statistics Explainedhttps://ec.europa.eu/eurostat/statistics-explained/

3. Statistical Yearbook of Agriculture;Rozkrut,2020

4. Global maize production, utilization, and consumption

5. Evaluation of sustainability of Maze cultivation in Poland. A prospect theory—PROMETHEE approach;Król;Sustainability,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3