Estimation Model of Rice Aboveground Dry Biomass Based on the Machine Learning and Hyperspectral Characteristic Parameters of the Canopy

Author:

Wang Xiaoke1,Xu Guiling1,Feng Yuehua12,Peng Jinfeng1,Gao Yuqi1,Li Jie1,Han Zhili1,Luo Qiangxin1,Ren Hongjun1,You Xiaoxuan1,Lu Wei1

Affiliation:

1. College of Agronomy, Guizhou University, Guiyang 550025, China

2. Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China

Abstract

Accurately estimating aboveground dry biomass (ADB) is crucial. The ADB of rice has primarily been estimated using vegetation indices with several discrete bands; nevertheless, these indices cannot take advantage of continuous bands available with hyperspectral remote sensing. This study analyzed the quantitative relationship between canopy hyperspectral characteristic parameters (HCPs) and the ADB of rice. Twenty HCPs were used, including red edge area (SDr), blue edge area (SDb), and others. The variable-screening methods involved stepwise regression (SR), a regression coefficient (RC), variable importance in projection (vip), and random forest (RF). Stepwise and partial least squares regression methods were employed with traditional linear regression as well as machine learning methods including random forest (RF), a support vector machine (SVM), a BP artificial neural network (BPNN), and an extreme learning machine. Whole- and screening-variable models were constructed to estimate rice ADB at jointing, booting, heading, and maturing stages and across growth stages. Screening-variable models include SVM models based on SR (SVM-sr), RF models based on vip (RF-vip), and others. The results show that the HCPs had a significant correlation with ADB containing elements in the red edge region, namely SDr, SDr/SDb, and (SDr − SDb)/(SDr + SDb) at each growth stage. In addition, the screening performance of vip and SR was better than that of RC and RF, and fewer variables were screened. Moreover, the HCPs of the red edge region were screened using different screening methods at each growth stage. Among them, SDr/SDb and (SDr − SDb)/(SDr + SDb) appeared frequently, indicating they are important. Furthermore, at each growth stage, ADB could be well-estimated using diverse models with the RF modeling method based on vip screening variables found to be the best modeling method for ADB estimation; the independent variables of the RF-vip model involved the (SDr − SDb)/(SDr + SDb) at each growth stage.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan Project Sub Topic of China

Talents Program of High Level and Innovative in Guizhou Province

Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province

Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3