Improved Conservation of Coffee (Coffea arabica L.) Germplasm via Micropropagation and Cryopreservation

Author:

Valdés Yanelis Castilla,Shukla Mukund R.ORCID,González Vega María Esther,Saxena Praveen K.ORCID

Abstract

Coffee (Coffea spp.) is an important tropical agricultural crop that has significant economic and social importance in the world. The ex situ conservation of plant genetic resources through seeds is not feasible due to the sensitivity of coffee seed to desiccation and low temperatures. The cryopreservation of zygotic embryos may allow for an efficient and long-term storage of coffee germplasm. This study describes the cryopreservation methods for conserving zygotic embryos of Coffea arabica L. for the long-term conservation of currently available germplasm. Zygotic embryos were successfully cryopreserved in liquid nitrogen at −196 °C under controlled environmental conditions with either droplet-vitrification or encapsulation–vitrification protocols without dehydration. Zygotic embryos had the highest regrowth (100%) following droplet-vitrification cryopreservation using the Plant Vitrification Solution 3 (PVS3) for 40 min at 23 °C. In the case of encapsulation–vitrification using PVS3 for 40 min at 23 °C, the embryo regeneration response was 78%. Plantlets were recovered following shoot multiplication using a temporary immersion system (TIS) and in vitro rooting. The prolific rooting of shoots was observed after 4 weeks of culture in the liquid medium with plugs made of the inert substrate Oasis® In vitro Express (IVE) compared to the semi-solid medium. The successful cryopreservation of coffee zygotic embryos using droplet vitrification and encapsulation–vitrification followed by micropropagation in temporary immersion culture system has not been reported earlier and together these technologies are anticipated to further facilitate the initiatives for the conservation and distribution of coffee germplasm.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference65 articles.

1. Global Conservation Strategy for Coffee Genetic Resources;Bramel,2017

2. Cafe Arabica Coffea arabica L.

3. Coffee Production Worldwide from 2003/04 to 2019/20 (in Million 60 Kilogram Bags)*. Statista, Statista Inchttps://www.statista.com/statistics/263311/worldwide-production-of-coffee/

4. Efecto del Bioenraiz® como estimulante de la germinación y el desarrollo de plántulas de cafeto (Coffea arabica L.);González;Cultiv. Trop.,2015

5. Coffee propagation;Wintgens,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3