Biochar for Circular Horticulture: Feedstock Related Effects in Soilless Cultivation

Author:

Amery FienORCID,Debode Jane,Ommeslag Sarah,Visser Rian,De Tender Caroline,Vandecasteele BartORCID

Abstract

Biochar has previously been used in growing media blends as fertilizer or for improving plant growth, disease suppression, and as a sustainable replacement of peat. To achieve optimal circular horticulture, we propose here to reuse the biochar from spent growing media. However, it is unclear to what extent the biochar feedstock determines the mode of action of the biochar and if use of spent growing media biochar may encounter nutrient or salt problems. Differences in chemical characteristics, nutrient release, and interaction in a leaching experiment and effects on plant growth, nutrient uptake, and disease suppression in a strawberry greenhouse trial were studied for 11 biochars either processed from spent growing media or from lignocellulosic biomass. A well-studied biochar produced from oak wood was set as reference. Biochars produced from spent growing media were characterized by higher electrical conductivity, extractable and total nutrient concentrations compared with biochars produced from lignocellulosic biomass. Especially in the first phase of the leaching experiment, all biochars showed nutrient and salt release, with most prominent effects for spent growing media biochars and the reference biochar. The latter biochars were an important source of phosphorus and in particular of potassium. Only for the reference biochar, strawberry plants showed increased uptake of phosphorus, potassium and calcium, and increased chlorophyll concentration. No Bortrytis cinerea disease suppression and no increase in plant growth was observed for the tested biochars. It is concluded that spent growing media can be recycled as biochar in growing media without adverse effects compared to biochars produced from lignocellulosic biomass.

Funder

Interreg

Research Foundation Flanders

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3