Prune-FSL: Pruning-Based Lightweight Few-Shot Learning for Plant Disease Identification

Author:

Yan Wenbo1,Feng Quan1,Yang Sen1,Zhang Jianhua2,Yang Wanxia1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The high performance of deep learning networks relies on large datasets and powerful computational resources. However, collecting enough diseased training samples is a daunting challenge. In addition, existing few-shot learning models tend to suffer from large size, which makes their deployment on edge devices difficult. To address these issues, this study proposes a pruning-based lightweight few-shot learning (Prune-FSL) approach, which aims to utilize a very small number of labeled samples to identify unknown classes of crop diseases and achieve lightweighting of the model. First, the disease few-shot learning model was built through a metric-based meta-learning framework to address the problem of sample scarcity. Second, a slimming pruning method was used to trim the network channels by the γ coefficients of the BN layer to achieve efficient network compression. Finally, a meta-learning pruning strategy was designed to enhance the generalization ability of the model. The experimental results show that with 80% parameter reduction, the Prune-FSL method reduces the Macs computation from 3.52 G to 0.14 G, and the model achieved an accuracy of 77.97% and 90.70% in 5-way 1-shot and 5-way 5-shot, respectively. The performance of the pruned model was also compared with other representative lightweight models, yielding a result that outperforms those of five mainstream lightweight networks, such as Shufflenet. It also achieves 18-year model performance with one-fifth the number of parameters. In addition, this study demonstrated that pruning after sparse pre-training was superior to the strategy of pruning after meta-learning, and this advantage becomes more significant as the network parameters are reduced. In addition, the experiments also showed that the performance of the model decreases as the number of ways increases and increases as the number of shots increases. Overall, this study presents a few-shot learning method for crop disease recognition for edge devices. The method not only has a lower number of parameters and higher performance but also outperforms existing related studies. It provides a feasible technical route for future small-sample disease recognition under edge device conditions.

Funder

National Natural Science Foundation of China

Industrialization Support Project from Education Department of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3