Affiliation:
1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
Abstract
The integration of Global Navigation Satellite System (GNSS) Real-Time Kinematics (RTK) can provide high-precision, real-time, and global coverage of location information in open areas. But in arboretum environment, the ability to achieve continuous high-precision positioning using global positioning technology is limited due to various sources of interference, such as multi-path effects, signal obstruction, and environmental noise. In order to achieve precise navigation in challenging GNSS signal environments, visual SLAM systems are widely used due to their ability to adapt to different environmental features. Therefore, this paper proposes an optimized solution that integrates the measurements from GNSS-RTK and stereo cameras. The presented approach aligns the coordinates between the two sensors, and then employs an adaptive sliding window approach, which dynamically adjusts the window size and optimizes the pose within the sliding window. At the same time, to address the variations and uncertainties of GNSS signals in non-ideal environments, this paper proposes a solution that utilizes a Gaussian Mixture Model (GMM) to model the potential noise in GNSS signals. Furthermore, it employs a Variational Bayesian Inference-based (VBI) method to estimate the parameters of the GMM model online. The integration of this model with an optimization-based approach enhances the positioning accuracy and robustness even further. The evaluation results of real vehicle tests show that in challenging GNSS arboretum environments, GMM applied to GNSS/VO integration has higher accuracy and better robustness.
Funder
The open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province
Guangdong Provincial Science and Technology Innovation Strategy Special Funds Project
Subject
Agronomy and Crop Science
Reference48 articles.
1. Xu, Q., Wang, M., Du, Z., and Zhang, Y. (2014, January 28–30). A positioning algorithm of autonomous car based on map-matching and environmental perception. Proceedings of the 33rd Chinese Control Conference, Nanjing, China.
2. Performance Evaluation of BDS/GPS Combined Single Point Positioning with Low-cost Single-Frequency Receiver;Guan;J. Indian Soc. Remote Sens.,2021
3. Real-time GNSS precise positioning: RTKLIB for ROS;Ferreira;Int. J. Adv. Robot. Syst.,2020
4. A survey on TOA based wireless localization and NLOS mitigation techniques;Guvenc;IEEE Commun. Surv. Tutor.,2009
5. An automated driving systems data acquisition and analytics platform;Xia;Transp. Res. Part C: Emerg. Technol.,2023