Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments

Author:

Liang Shenghao1ORCID,Zhao Wenfeng1,Lin Nuanchen1ORCID,Huang Yuanjue1

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China

Abstract

The integration of Global Navigation Satellite System (GNSS) Real-Time Kinematics (RTK) can provide high-precision, real-time, and global coverage of location information in open areas. But in arboretum environment, the ability to achieve continuous high-precision positioning using global positioning technology is limited due to various sources of interference, such as multi-path effects, signal obstruction, and environmental noise. In order to achieve precise navigation in challenging GNSS signal environments, visual SLAM systems are widely used due to their ability to adapt to different environmental features. Therefore, this paper proposes an optimized solution that integrates the measurements from GNSS-RTK and stereo cameras. The presented approach aligns the coordinates between the two sensors, and then employs an adaptive sliding window approach, which dynamically adjusts the window size and optimizes the pose within the sliding window. At the same time, to address the variations and uncertainties of GNSS signals in non-ideal environments, this paper proposes a solution that utilizes a Gaussian Mixture Model (GMM) to model the potential noise in GNSS signals. Furthermore, it employs a Variational Bayesian Inference-based (VBI) method to estimate the parameters of the GMM model online. The integration of this model with an optimization-based approach enhances the positioning accuracy and robustness even further. The evaluation results of real vehicle tests show that in challenging GNSS arboretum environments, GMM applied to GNSS/VO integration has higher accuracy and better robustness.

Funder

The open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province

Guangdong Provincial Science and Technology Innovation Strategy Special Funds Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3