Intercropping of Echinochloa frumentacea with Leguminous Forages Improves Hay Yields, Arbuscular Mycorrhizal Fungi Diversity, and Soil Enzyme Activities in Saline–Alkali Soil

Author:

Cheng Yunlong1,Xu Xing1,Zhang Yang2,Gu Xudong1,Nie Haojie34,Zhu Lin34

Affiliation:

1. College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China

2. Gansu Analysis and Research Center, Lanzhou 730000, China

3. School of Ecology and Environment, Ningxia University, Yinchuan 750021, China

4. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Yinchuan 750021, China

Abstract

Soil salinization is detrimental to crop growth, agricultural yields, and environmental protection. Echinochloa frumentacea (Roxb.) Link is a pioneer species for the alteration of saline–alkali lands. In this paper, we examined the effects of intercropping between E. frumentacea and leguminous forages on saline land improvement in the saline–alkali soil of the Hetao-Ningxia Plain, China. We found that intercropping increased the diversity and richness of the arbuscular mycorrhizal fungi (AMF) community in the rhizosphere soil of E. frumentacea. Glomus was the dominant genus in the saline–alkali soil of the Hetao-Ningxia Plain, where Glomeraceae, VTX00067, VTX000193, and VTX000165 were the dominant species. Intercropping improved the activities of soil urease, sucrase, alkaline phosphatase, and catalase. The hay yields of E. frumentacea were correlated positively with soil enzyme activities, Chao1 index, and ACE index, and negatively with total water-soluble salt content. Together, intercropping between E. frumentacea and leguminous forages enhances AMF diversity and soil enzyme activities, which provides an agricultural practice for improving sustainability of the agro-ecosystem in saline–alkali areas.

Funder

National Key Research & Development Program of China

Agricultural Breeding Project of Ningxia Hui Autonomous Region

Key Research & Development Program of Ningxia Hui Autonomous Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3