Abstract
Rice is a staple food crop for almost half of the world’s population, especially in the developing countries of Asia and Africa. It is widely grown in different climatic conditions, depending on the quality of the water, soil, and genetic makeup of the rice cultivar. Many (a)biotic stresses severely curtail rice growth and development, with an eventual reduction in crop yield. However, for molecular functional analysis, the availability of an efficient genetic transformation protocol is essential. To ensure food security and safety for the continuously increasing global population, the development of climate-resilient crops is crucial. Here, in this study, the rice transformation protocol has been effectively optimized for the efficient and rapid generation of rice transgenic plants. We also highlighted the critical steps and precautionary measures to be taken while performing the rice transformation. We further assess the efficacy of this protocol by transforming rice with two different transformation constructs for generating galactinol synthase (GolS) overexpression lines and CRISPR/Cas9-mediated edited lines of lipase (Lip) encoding the OsLip1 gene. The putative transformants were subjected to molecular analysis to confirm gene integration/editing, respectively. Collectively, the easy, efficient, and rapid rice transformation protocol used in this present study can be applied as a potential tool for gene(s) function studies in rice and eventually to the rice crop improvement.
Funder
Department of Science and Technology
Subject
Agronomy and Crop Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献