The Synergistic Effect of Biochar and Microorganisms Greatly Improves Vegetation and Microbial Structure of Degraded Alpine Grassland on Qinghai–Tibet Plateau

Author:

Li Jinsheng12,Li Hui2,Shang Jianying3,Liu Kesi24ORCID,He Yixuan2,Shao Xinqing24ORCID

Affiliation:

1. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

2. College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China

3. Department of Water and soil Science, China Agricultural University, Beijing 100193, China

4. Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China

Abstract

The attenuation of soil organic carbon and the destruction of soil microbial structure are common manifestations of grassland degradation. The addition of exogenous organic carbon and microorganisms may be an effective way to quickly restore degraded grassland, but corresponding evaluations are still rare. We investigated the effects of effective microorganisms (EM) and biochar addition on vegetation biomass, microorganisms and soil properties in degraded alpine grassland. The treatments included a control (no biochar or EM addition, CK), EM addition (250 mL m−2 EM, M), biochar addition (4.00 kg m−2 biochar, C) and a mixture of biochar and EM (4.00 kg m−2 biochar and 250 mL m−2 EM, C+M). C, M and C+M rapidly increased vegetation biomass, soil organic carbon (TOC), total nitrogen (TN), available nitrogen (NH4+-N, NO3−-N), available phosphorus (AP), total microbial biomass (MB), bacteria and fungus biomass in the soil, and also altered the microbial community structure. The content of soil nutrients in the C treatment was the highest, followed by C+M. The vegetation biomass and microbial biomass were the greatest in the C+M treatment, and increased by 101.04~198.52% and 22.14~45.41%, respectively. C+M can also enhance the presence of saprotrophic fungi, thereby facilitating the augmentation of both plant and soil nutrients. Overall, the biochar combined with EM addition had a synergistic effect on the restoration of degraded alpine grasslands.

Funder

National Key Research and Development Program of China

earmarked fund for CARS

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3