Ecological Intensification of Food Production by Integrating Forages

Author:

Franco José G.ORCID,Berti Marisol T.ORCID,Grabber John H.ORCID,Hendrickson John R.,Nieman Christine C.ORCID,Pinto PriscilaORCID,Van Tassel DavidORCID,Picasso Valentín D.ORCID

Abstract

Forage crops have the potential to serve multiple functions, providing an ecological framework to sustainably intensify food production, i.e., ecological intensification. We review three categories of forages (annual forages, perennial forages, and dual-use perennial crops/forages) we believe hold the greatest promise for ecologically intensifying food production. Annual cover crops can provide additional forage resources while mitigating nutrient losses from agricultural fields when they are intercropped with, interseeded into, or following an annual crop, for instance. The integration of perennial forages either temporally, such as annual crop rotations that include a perennial forage phase, or spatially, such as the intercropping of perennial forages with an annual cash crop, provide weed suppression, soil quality, and yield and crop quality benefits. Dual-use crops/forages can provide forage and a grain crop in a single year while providing multiple ecological and economic benefits. However, tradeoffs in balancing multiple functions and limitations in reducing the risks associated with these practices exist. Advancing our understanding of these systems so we can overcome some of the limitations will play a critical role in increasing food production while promoting positive environmental outcomes.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference222 articles.

1. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050

2. World Agriculture toward 2030/2050: The 2012 Revision. Food and Agriculture Organization of the United Nations. ESA Working Paper no. 12-03http://www.fao.org/3/ap106e/ap106e.pdf

3. Landscapes that work for biodiversity and people

4. Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3