Abstract
Adjusting yearly pruning severity is a common vineyard management practice employed to manipulate vegetative and reproductive growth in grapevines. Although the effects of pruning on total vegetative growth are well documented, there is little research on the effects of adjusting shoots meter−1 via dormant season pruning on addressing mid-cordon shoot weakness and developmental delays. Cordon-trained, spur-pruned vines are thought, by many growers, to be especially prone to weaker positions and delayed development at mid-cordon positions. This phenomenon is also thought to become more exaggerated as the vine ages. Therefore, the effects of shoot density manipulation, implemented via dormant pruning practices, to homogenize shoot and cluster development along the length of the cordon were examined. In this research, Cabernet Sauvignon grapevines were pruned to either 5.5 shoots meter−1 (5.5) or 11.1 shoots meter−1 (11.1). To control for variations in light interception into the fruiting zone, a control of 11.1 shoots meter−1 with sensor guided leaf thinning (11.1LT) was implemented at full berry set to match the canopy light of the 5.5 shoots meter−1 treatment. It was found that individual shoot growth and yield were directly impacted by manipulation of pruning severity. Shoot growth response varied primarily by growing season, including shoot length and internode length. Yield components were significantly lower in the 5.5 treatment during the first two years of the study but were not significantly different during the last year of the study. The 5.5 treatment resulted in the highest pH and total soluble solids at harvest in 2016 and 2017.
Funder
California State University Agricultural Research Institute
Subject
Agronomy and Crop Science