Using Remote and Proximal Sensing in Organic Agriculture to Assess Yield and Environmental Performance

Author:

Schuster Johannes1,Hagn Ludwig1,Mittermayer Martin1,Maidl Franz-Xaver1,Hülsbergen Kurt-Jürgen1

Affiliation:

1. Chair of Organic Agriculture and Agronomy, Technische Universität München, Liesel-Beckmann-Straße 2, 85354 Freising, Germany

Abstract

Satellite and sensor-based systems of site-specific fertilization have been developed almost exclusively in conventional farming. Agronomic and ecological advantages can also be expected from these digital methods in organic farming. However, it has not yet been investigated whether the algorithms and models are also applicable under organic farming conditions. In this study, the digital data and systems tested in the years 2021 and 2022 in southern Germany were (a) reflectance measurements with a tractor-mounted multispectral sensor, calculation of the vegetation index REIP, and application of algorithms; (b) satellite data in combination with the plant growth model PROMET; and (c) determination of the vegetation index NDVI based on satellite data. They were used to determine plant parameters (crop yield, biomass potential) and to calculate nitrogen balances at a high spatial resolution (10 × 10 m). The digital systems were tested at two sites with different organic farming systems (arable farming and dairy farming). Validation of the digital methods was carried out with ground-truth data from manual biomass sampling and combine harvester yield measurement. The nitrate leaching risk from the crop rotations of the farms was analyzed via site-specific N balancing using multi-year satellite data. The N balances were validated by measuring nitrate concentrations in leakage water. Additionally, soil properties, such as soil organic carbon (SOC) and total nitrogen (TN), were measured at the sub-field level. Using geostatistics, plant data, soil properties, and nitrate measurements were transferred into grids of the same resolution to enable correlation analyses. The correlations between yield determined with digital systems and the validation data were up to r = 0.77. Site-specific N balancing showed moderately positive correlations with nitrate concentrations in leakage water (r = 0.50–0.66). The strongly positive influence of the soil properties SOC and TN on crop yields underlines the importance of soil organic matter on soil fertility and site-specific yield potentials. The results show that digital methods allow the spatially high-resolution determination of yields and nitrogen balances in organic farming. This can be the basis for new management strategies in organic farming, e.g., the targeted use of limited nutrients to increase yields. Further validations under differentiated soil, climate, and management conditions are required to develop remote and proximal sensing applications in organic farming.

Funder

Bavarian State Ministry of Food, Agriculture, and Forestry

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference60 articles.

1. Digital agriculture to design sustainable agricultural systems;Basso;Nat. Sustain.,2020

2. Innovation in agroecological and organic farming systems;Niggli;Chin. J. Eco-Agric.,2021

3. Willer, H., and Lernoud, J. (2018). Statistics and Emerging Trends 2018, Research Institute of Organic Agriculture FiBL and IFOAM—Organics International.

4. Willer, H., and Lernoud, J. (2017). The World of Organic Agriculture: Statistics & Emerging Trends 2017, Forschungsinstitut für Biologischen Landbau FIBL.

5. European Commission (2020). From Farm to Fork: Our Food, Our Health, Our Plan, European Union.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3