Nitrogen-Reduction in Intensive Cultivation Improved Nitrogen Fertilizer Utilization Efficiency and Soil Nitrogen Mineralization of Double-Cropped Rice

Author:

Luo Zhuo,Song Haixing,Huang MinORCID,Zhang ZhenhuaORCID,Peng Zhi,Zi Tao,Tian Chang,Eissa Mamdouh A.ORCID

Abstract

Under the current rice cropping system, excessive nitrogen application has become a major issue that needs to be changed, and nitrogen reduction has become a hot research topic in recent years. The use of optimum planting density is becoming a common agronomic management system in addition to nitrogen reduction, especially under double cropping rice systems. In this paper, changes in rice yield, nitrogen-use efficiency (NUE) and net N mineralization under dense planting with a reduced nitrogen rate (DPRN) were studied. By comparing DPRN with high-nitrogen sparse planting (SPHN), we found that the population tiller number (tiller number per unit area) increased by 9–27% under DPRN cultivation. Nitrogen accumulation under DPRN treatment of double-cropped rice was basically stable. NUE under DPRN was significantly higher by 1.3–22.7% compared to SPHN. The partial factor productivity of applied N (PFPN) was significantly higher than that of SPHN, with an increase of 4.3–22.8%. The net N mineralized of double-cropped rice under DPRN increased at different stages, and the increase in late-season rice (LSR) was greater than that of early-season rice (ESR). The highest net N mineralized in double cropping rice at different stages was found in the dense planting treatment (DP) and N2 (120 kg N h−1). In conclusion, DPRN cultivation of double-cropped rice could be accepted as a proper management strategy for reducing nitrogen input, improving NUE and promoting soil nitrogen mineralization under given conditions.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3