Assessing and Modeling Ecosystem Carbon Exchange and Water Vapor Flux of a Pasture Ecosystem in the Temperate Climate-Transition Zone

Author:

Li ZhouORCID,Chen Chao,Nevins Andrew,Pirtle Todd,Cui Song

Abstract

The rising frequency of extreme weather events and global warming are greatly challenging pastoral ecosystem productivity, particularly in the temperate climate-transition regions. While this could cause greater gross primary production (GPP) mainly contributed by the warm-season vegetation, the consequences for the dynamics of net ecosystem exchange (NEE) and hydrological responses (e.g., evapotranspiration, ET) on an ecosystem level are poorly known. Here, we investigated the evolution of plant phenology, nutritive value, energy balance, and carbon/water budgets of a cool-season dominated pastoral ecosystem in the temperate zone; integrating both eddy covariance (EC) flux measurement and simulation modeling-based uncertainty analysis. Throughout the two-year duration (2017–2018) of this study, the entire pasture ecosystem remained a strong carbon sink (NEE = −1.23 and −1.95 kg C m−2, respectively) with 74% and 62% of available energy loss explained by EC fluxes, respectively. The cumulative ET was 735.8 and 796.8 mm, respectively; and the overall ecosystem water use efficiency (EWUE) were calculated as 6.5 g C kg−1 water across both growing seasons. The above-ground biomass yield agreed with the cumulative GPP and was inversely correlated with grass nutritive value. The uncertainty analysis indicated that accurate EC flux gap-filling models could be constructed using support vector machine trained time-series models (NEE, R2 = 0.77, RMSE = 11.8; ET, R2 = 0.90, RMSE = 73.8). The performance benchmarking tests indicated that REddyProc-based gap-filling performance was very limiting and highly variable (NEE, R2 = 0.21–0.64; ET, R2 = 0.79–0.87), particularly for estimating NEE. Overall, the warm-season vegetation encroachment greatly filled the production gap of cool-season grasses, leading to greater cumulative NEE and EWUE on a system level, compared with those from many other reported field-crop or grassland studies using EC approaches. The complex and dynamic nature of grassland ecosystems greatly challenged the conventional REddyProc-based EC flux gap-filling performance. However, accurate machine learning models could be constructed for error/uncertainty control purposes and, thus, should be encouraged in future studies.

Funder

Guizhou University

National Natural Science Foundation of China

Guizhou Talent Base of Grassland Ecological Animal Husbandry

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3