Starch Morphology and Metabolomic Analyses Reveal That the Effect of High Temperature on Cooked Rice Elongation and Expansion Varied in Indica and Japonica Rice Cultivars

Author:

Okpala Nnaemeka EmmanuelORCID,Potcho Mouloumdema Pouwedeou,Imran MuhammadORCID,An Tianyue,Bao Gegen,He Longxin,Li Lin,Tang XiangruORCID

Abstract

Rice (Oryza sativa L.) is mainly grouped into indica and japonica varieties. The aim of this study was to investigate the effect of temperature on cooked rice elongation, cooked rice expansion, and rice fragrance. This study was conducted in three growth temperature chambers with indica cultivar Basmati 385 (B385) and japonica cultivar Yunjingyou (YJY). Grains of B385 grown in low-temperature regimes had the highest cooked rice elongation and expansion, whereas the grains of YJY grown in high-temperature regimes had the highest cooked rice elongation and expansion. Starch granules of B385 grown in low-temperature regimes were more compact and bigger, compared to grains grown in medium- and high-temperature regimes. Conversely, the starch granules of YJY grown in high-temperature regimes were more compact and bigger, compared to those grown in medium- and low-temperature regimes. Metabolomic analyses showed that temperature affected the rice metabolome and revealed that cyclohexanol could be responsible for the differences observed in cooked rice elongation and expansion percentage. However, in both B385 and YJY, grains from low-temperature regimes had the highest 2-AP content and the lowest expression levels of the badh2 gene. The findings of this study will be useful to rice breeders and producers.

Funder

National Natural Science Foundation of China

The Technology System of Modern Agricultural Industry in Guangdong

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3