Abstract
Predicting crop yields is one of the most challenging tasks in agriculture. It plays an essential role in decision making at global, regional, and field levels. Soil, meteorological, environmental, and crop parameters are used to predict crop yield. A wide variety of decision support models are used to extract significant crop features for prediction. In precision agriculture, monitoring (sensing technologies), management information systems, variable rate technologies, and responses to inter- and intravariability in cropping systems are all important. The benefits of precision agriculture involve increasing crop yield and crop quality, while reducing the environmental impact. Simulations of crop yield help to understand the cumulative effects of water and nutrient deficiencies, pests, diseases, and other field conditions during the growing season. Farm and in situ observations (Internet of Things databases from sensors) together with existing databases provide the opportunity to both predict yields using “simpler” statistical methods or decision support systems that are already used as an extension, and also enable the potential use of artificial intelligence. In contrast, big data databases created using precision management tools and data collection capabilities are able to handle many parameters indefinitely in time and space, i.e., they can be used for the analysis of meteorology, technology, and soils, including characterizing different plant species.
Subject
Agronomy and Crop Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献