Alterations in Soil Bacterial Community and Its Assembly Process within Paddy Field Induced by Integrated Rice–Giant River Prawn (Macrobrachium rosenbergii) Farming

Author:

Zhang Yiyun1,Hou Yiran12ORCID,Jia Rui12ORCID,Li Bing12,Zhu Jian12,Ge Xianping12

Affiliation:

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China

2. Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract

Integrated rice–aquatic animal farming has become a vital strategy for enhancing food security. To assess the effects of integrated rice–giant river prawn (Macrobrachium rosenbergii) farming (IRPF) on agricultural ecosystems, we used 16S rRNA gene sequencing to analyze soil bacterial communities in comparison with traditional rice monoculture (RM). Our study revealed that the IRPF did not significantly affect the diversity of the soil bacterial community. However, during the initial culture stage, IRPF markedly increased the relative abundance of the phylum candidate division NC10 and the genus Candidatus Methylomirabilis, enhancing nitrogen-cycling-related functions within the bacterial community. Additionally, IRPF reduced the complexity and stability of these communities in the early to middle culture stages. While stochastic processes usually dominate the assembly of these communities, IRPF restricted bacterial migration and reduced the influence of these stochastic processes. Furthermore, IRPF had a significant impact on environmental factors within paddy soils, strongly correlating with shifts in bacterial communities, particularly through variations in soil nitrite concentration. In conclusion, the influence of IRPF on the bacterial community in paddy soils was primarily observed during the early and middle culture stages, and the impacts of IRPF on the soil bacterial community were primarily driven by environmental changes, especially soil nitrite concentration. These findings provide theoretical insights and a reference for understanding the microbiological impacts of different integrated rice–fish farming systems on agricultural ecosystems.

Funder

Central Public Interest Scientific Institution Basal Research Fund, Freshwater Fisheries Research Center, CAFS

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3