Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain

Author:

Han Xiangfei,Dong Lina,Cao Yujun,Lyu Yanjie,Shao Xiwen,Wang Yongjun,Wang Lichun

Abstract

Cultivar and sowing date selection are major factors in determining the yield potential of any crop and in any region. To explore how climate change affects these choices, this study performed a regional scale analysis using the well-validated APSIM-maize model for the Northeast China Plain (NEC) which is the leading maize (Zea mays L.) producing area in China. Results indicated that high temperature had a significantly negative effect on grain yield, while effective accumulated temperature and solar radiation had significant positive effects on grain yield and kernel number. Cloudy and rainy weather in flowering stage had significant negative effects on kernel number. Delayed sowing led to less cloudy and rainy weather during flowering and reduced the negative effect on kernel number. Higher diurnal thermal range and less precipitation during the grain-filling stage also increased the 1000-kernel weight. Delayed sowing, however, also significantly increased the risk of early senescence and frost (>80%) in middle and high latitude areas. In the middle and high latitude areas of the NEC, the grain yield of a long-season cultivar (LS) under early sowing (I) (6.2–19.9%) was significantly higher than under medium sowing (II) or late sowing (III), and higher than that of an early sown (I) short-season (SS) and medium-season cultivar (MS). In the low latitude area of the NEC, the grain yield of MS under medium sowing date (II) was higher than that under I and III, meanwhile, this was also higher than that of SS and LS. Therefore, under climate warming, LS sown earlier in high and medium latitudes and MS sown medium in low latitude were the appropriate cultivar and sowing date choices, which could mitigate the stress of high temperatures and reduce the risk of early senescence and frost. Cultivar and sowing date selection are effective measures to alleviate negative effects of climate change on maize production in the NEC, and provides valuable advice for breeders on cultivar selection, and the choice of varieties and sowing dates for farmers in actual production.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference46 articles.

1. Future global climate: Scenario based projections and near-term information;Lee,2021

2. Prioritizing Climate Change Adaptation Needs for Food Security in 2030

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3