Spatial Modelling of Within-Field Weed Populations; a Review

Author:

Somerville Gayle J.ORCID,Sønderskov Mette,Mathiassen Solvejg KoppORCID,Metcalfe Helen

Abstract

Concerns around herbicide resistance, human risk, and the environmental impacts of current weed control strategies have led to an increasing demand for alternative weed management methods. Many new weed management strategies are under development; however, the poor availability of accurate weed maps, and a lack of confidence in the outcomes of alternative weed management strategies, has hindered their adoption. Developments in field sampling and processing, combined with spatial modelling, can support the implementation and assessment of new and more integrated weed management strategies. Our review focuses on the biological and mathematical aspects of assembling within-field weed models. We describe both static and spatio-temporal models of within-field weed distributions (including both cellular automata (CA) and non-CA models), discussing issues surrounding the spatial processes of weed dispersal and competition and the environmental and anthropogenic processes that affect weed spatial and spatio-temporal distributions. We also examine issues surrounding model uncertainty. By reviewing the current state-of-the-art in both static and temporally dynamic weed spatial modelling we highlight some of the strengths and weaknesses of current techniques, together with current and emerging areas of interest for the application of spatial models, including targeted weed treatments, economic analysis, herbicide resistance and integrated weed management, the dispersal of biocontrol agents, and invasive weed species.

Funder

Horizon 2020 Framework Programme

Natural Environment Research Council

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference119 articles.

1. Crop losses to pests

2. Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practicess;Llewellyn,2016

3. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence

4. Utilise the potential herbicide savings using weed maps, when the sprayers have limited capabilities;Somerville,2019

5. Precision Agriculture and Food Security

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3