Ethyl Methyl Sulfonate-Induced Mutagenesis and Its Effects on Peanut Agronomic, Yield and Quality Traits

Author:

Chen Tingting,Huang Luping,Wang Miaomiao,Huang Yang,Zeng Ruier,Wang Xinyue,Wang LeidiORCID,Wan Shubo,Zhang LeiORCID

Abstract

Peanut is an important oilseed and food crop worldwide; however, the development of new cultivars is limited by its remarkably low genetic variability. Therefore, in order to enhance peanut genetic variability, here, we treated two widely cultivated peanut genotypes, Huayu 22 and Yueyou 45, with different concentrations of the mutagen ethyl methyl sulfonate (EMS) for different durations. Based on median lethal dose (LD50) value, optimal EMS treatment concentrations for each duration were identified for each genotype. Mutants induced by EMS differed in various phenotypic traits, including plant height, number of branches, leaf characteristics, and yield and quality in plants of the M2 generation. Moreover, we identified potentially useful mutants associated with dwarfism, leaf color and shape, high oil and/or protein content, seed size and testa color, among individuals of the M2 generation. Mutations were stably inherited in M3-generation individuals. In addition to their contribution to the study and elucidation of the mechanisms underlying the regulation of the expression of some important agronomic traits, the mutants obtained in this study provide valuable germplasm resources for use in peanut improvement programs.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference73 articles.

1. Food and Agriculture Organization of the United Nationshttp://wwwfaoorg/

2. Advances in Arachis genomics for peanut improvement

3. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome;de Carvalho Moretzsohn;BMC Plant Biol.,2004

4. Generation of mutant lines of Nigella sativa L. by induced mutagenesis for improved seed yield

5. In silicoscreening of a saturated mutation library of tomato

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3