Seed Protein Genetics Linked with Nitrogen and Phosphorus Translocation Efficiency in Soybean

Author:

Zhao Qingsong12ORCID,Ma Niannian1,Li Ruirui1,Zhong Yongjia1ORCID,Li Xinxin1,Liao Hong1ORCID

Affiliation:

1. Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China

Abstract

Soybean (Glycine max (L.) Merr.) is an important nutritional crop with high seed protein content. Production of high protein concentrations relies on sufficient nutrient supplies, especially of nitrogen (N) and phosphorus (P). Although the genetic basis for seed quality traits has been well studied, little information exists on any genetic connections between seed quality and nutrient supplies in soybean. Here, a recombinant inbred line (RIL) population of 179 progeny was generated using HC6 and JD17 as parents contrasting in seed quality and N and P translocation efficiencies. Seed protein and N and P translocation efficiencies were higher in HC6 than in JD17. Meanwhile, positive correlations were observed between seed protein content and translocation efficiency of N and P in RILs, implying that high N and P translocation efficiencies might facilitate seed protein accumulation. A genetic map was constructed using 5250 SNP markers covering a genetic distance of 3154.83 cM. A total of 6 loci for quality and 13 loci for N and P translocation efficiency were detected. Among them, two fragments on chromosome 6 and chromosome 20 contained multiple significant markers for both quality and N and P translocation efficiencies, with the respective observed LOD values ranging from 2.98 to 5.61, and 3.01 to 11.91, while the respective PVE values ranged from 8.2% to 13.9%, and 8.3% to 28.0%. Interestingly, one significant locus on chromosome 20 appears to be the product of a transposable element (TE) InDel in Glyma.20G085100, with progeny lacking the TE also exhibiting higher N and P translocation efficiencies, along with higher seed protein contents. Taken together, these results provide genetic evidence that increasing N and P translocation efficiencies may lead to increasing protein contents in soybean seeds. Furthermore, a TE InDel may be used as a genetic marker for breeding elite soybean cultivars with high protein content and N and P translocation efficiencies.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3