An Integrated Decision Support System for Environmentally-Friendly Management of the Ethiopian Fruit Fly in Greenhouse Crops

Author:

Nestel David,Cohen YafitORCID,Shaked Ben,Alchanatis Victor,Nemny-Lavy Esther,Miranda Miguel Angel,Sciarretta Andrea,Papadopoulos Nikos T.

Abstract

The Ethiopian fruit fly (EFF), Dacus ciliatus, is a key, invasive pest of melons in the Middle East. We developed and implemented a novel decision support system (DSS) to manage this pest in a greenhouse environment in Southern Israel. Dacus ciliatus is commonly controlled in Israel with repeated calendar-sprayings (every 15 days) of pyrethroid pesticides. The current study compares the performance of a DSS against calendar-spraying management (CSM). DSS was based on EFF population monitoring and infestation. DSS took into consideration concerns and observations of expert managers and farmers. During 2014, EFF damage was concentrated in the spring melon production season. Fall and winter production did not show important damage. Damage during the spring of 2014 started to increase when average EFF/trap/day reached 0.3. This value was suggested as the threshold to implement pesticide spraying in DSS greenhouses. EFF/trap/day trends were derived from monitoring with conventional traps and a novel electronic remote sensing trap, developed by our group. CSM during the spring of 2015 included 3 EFF control sprays, while DSS-managed greenhouses were only sprayed once. At the end of the spring season, damage was slightly higher in DSS greenhouses (1.5%), but not significantly different to that found in CSM greenhouses (0.5%). Results support continuing DSS research and optimization to reduce/remove pesticide use against EFF in melon greenhouses. Interactions with farmers and managers is suggested as essential to increase adoption of DSS in agriculture.

Funder

ENPI CBC MED/EU

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3