Long-Term Successive Seasonal Application of Rice Straw-Derived Biochar Improves the Acidity and Fertility of Red Soil in Southern China

Author:

He Lili12,Zhao Jin3,Wang Mengjie4,Liu Yuxue12,Wang Yuying12,Yang Shengmao12,Wang Shenqiang5,Zhao Xu5,Lyu Haohao12

Affiliation:

1. Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China

3. Postgraduate Research Institute, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China

5. State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 100045, China

Abstract

Soil acidity is a crop production problem of increasing concern in acid red soil. The potential of biochar as a soil amendment/for soil acid management in agricultural fields is a recently recognized yet underutilized technology. Related evidence is currently limited to short-term indoor experiments with one-time BC applications and no crop cultivation, yet the degree to which soil acidity may be impacted by the biochar aging process on long-time scale remains unclear. To evaluate the effects of successive seasonal applications of rice straw-derived biochar (BC) on acidity and fertility of soil, a five-year outdoor column trial was conducted using wheat-millet rotated acidic upland soils from the south of China. BC was applied to the top 0–15 cm of soil at the rates of 0 (BC0), 2.25 (BCL), and 22.5 (BCM) Mg ha−1 with an identical dose of NPK fertilizers at the beginning of each crop season. Our results showed that the wheat-millet biomass yield gradually decreased over five rotation cycles in BC0 without BC application. In contrast, after five rotations, BCM led to an increase in the total wheat/millet grain yield by 138%, and the straw yield increased by 253% compared to the control. The cumulative above-ground nutrient uptake of P, K, Ca, Na, and Mg in BCM also increased by 139%, 171%, 129%, 182%, and 71%, respectively, compared to that in the control. This positive effect was attributed to the increase in soil pH (3.29 units), cation exchange capacity (5.66 cmol kg−1), soil available P (241%), K (513%), Ca (245%), Mg (265%), exchange base (3.36 cmol kg−1), base saturation percentage (65.7%), and decrease in the exchangeable acidity, especially exchangeable Al3+ content (<0.1 cmol kg−1). Our results demonstrated that rice straw-derived BC application to soil at 22.5 t ha−1 was found to be highly consistent in decreasing soil acidity and reducing soluble and exchangeable Al3+, indicating its higher ameliorating capacity in the south of China in the long run.

Funder

Natural Science Foundation of Zhejiang

Key R&D Project of Zhejiang Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3