Leaching of Sulfadiazine and Florfenicol in an Entisol of a Chicken-Raising Orchard: Impact of Manure-Derived Dissolved Organic Matter

Author:

Gbadegesin Lanre AnthonyORCID,Liu Xinyu,Tang Xiangyu,Liu Chen,Cui JunfangORCID

Abstract

Antibiotic pollution from manured farmland soils is a major public concern, and their potential interaction with manure particles and/or manure–dissolved organic matter (DOM) often complicates their leaching behaviour. This study investigated the leaching of sulfadiazine (SDZ) and florfenicol (FFC) with manure-DOM in undisturbed field lysimeters and repacked soil columns under natural and simulated rainfall conditions. The results showed that manure-DOM reduced SDZ mass flux, but soil hydrological processes and heavy rainfall events led to accelerated leaching. FFC was more prone to leaching in a manured plot (0.48 µg m−2 h−1) compared to the control (0.12 µg m−2 h−1), suggesting DOM facilitated transport of FFC in the field lysimeter study via cotransport mechanisms favored by abundant macropores in the study site. In contrast, SDZ and FFC mobility were reduced in repacked soil columns under manure-DOM conditions, suggesting complexation and adsorption in matrix pores. Two kinetic site models and two-site nonequilibrium adsorption models revealed the existence of nonequilibrium conditions and kinetic sorption processes in the repacked column. FFC exhibited lower leaching potential compared to SDZ in both the repacked column and natural field conditions. Redundancy analyses revealed that FFC had a close relationship with humic-like components (C1 and C3), but SDZ was more related to the protein-like components (C2) of DOM. The presence of manure-DOM may decrease the ecological risks of highly mobile antibiotics under matrix flow through complexations and adsorption. However, a similar scenario in macroporous flow under heavy rainfalls may lead to accelerated leaching.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3