Pre-Harvest UV-B Radiation and Photosynthetic Photon Flux Density Interactively Affect Plant Photosynthesis, Growth, and Secondary Metabolites Accumulation in Basil (Ocimum Basilicum) Plants

Author:

Dou Haijie,Niu GenhuaORCID,Gu MengmengORCID

Abstract

Phenolic compounds in basil (Ocimum basilicum) plants grown under a controlled environment are reduced due to the absence of ultraviolet (UV) radiation and low photosynthetic photon flux density (PPFD). To characterize the optimal UV-B radiation dose and PPFD for enhancing the synthesis of phenolic compounds in basil plants without yield reduction, green and purple basil plants grown at two PPFDs, 160 and 224 μmol·m−2·s−1, were treated with five UV-B radiation doses including control, 1 h·d−1 for 2 days, 2 h·d−1 for 2 days, 1 h·d−1 for 5 days, and 2 h·d−1 for 5 days. Supplemental UV-B radiation suppressed plant growth and resulted in reduced plant yield, while high PPFD increased plant yield. Shoot fresh weight in green and purple basil plants was 12%–51% and 6%–44% lower, respectively, after UV-B treatments compared to control. Concentrations of anthocyanin, phenolics, and flavonoids in green basil leaves increased under all UV-B treatments by 9%–18%, 28%–126%, and 80%–169%, respectively, and the increase was greater under low PPFD compared to high PPFD. In purple basil plants, concentrations of phenolics and flavonoids increased after 2 h·d−1 UV-B treatments. Among all treatments, 1 h·d−1 for 2 days UV-B radiation under PPFD of 224 μmol·m−2·s−1 was the optimal condition for green basil production under a controlled environment.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3