Abstract
The present study focused on the development, optimization, and performance evaluation of a harvesting robot for heavyweight agricultural products. The main objective of developing this system is to improve the harvesting process of the mentioned crops. The pumpkin was selected as a heavyweight target crop for this study. The main components of the robot consist of mobile platforms (the main robot tractor and a parallel robot tractor), a manipulation system and its end-effector, and an integrated control unit. The development procedure was divided into four stages: stage I (designed system using Solidworks), stage II (installation of the developed system on a temporary platform), stage III (developed system on an RT-1 (Yanmar EG453)), and stage IV (developed system on an RT-2 (Yanmar YT5113)). Various indicators related to the performance of the robot were evaluated. The accuracy of 5.8 and 4.78 mm in x and y directions and repeatability of 5.11 mm were observed. The harvesting success rate of 87~92%, and damage rate of 5% resulted in the evaluation of the final version. The average cycle time was 35.1 s, 42.6 s, and 43.2 s for stages II, III, and IV, respectively. The performance evaluations showed that the system’s indicators are good enough to harvest big-sized and heavy-weighted crops. Development of the unique and unified system, including a mobile platform, a manipulation system, an end-effector, and an integrated algorithm, completed the targeted harvesting process appropriately. The system can increase the speed and improve the harvesting process because it can work all day long, has a precise robotic manipulation and end-effector, and a programmable controlling system that can work autonomously.
Subject
Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献