A Dynamic Detection Method for Phenotyping Pods in a Soybean Population Based on an Improved YOLO-v5 Network

Author:

Fu XiaomingORCID,Li Aokang,Meng Zhijun,Yin Xiaohui,Zhang Chi,Zhang Wei,Qi Liqiang

Abstract

Pod phenotypic traits are closely related to grain yield and quality. Pod phenotype detection in soybean populations in natural environments is important to soybean breeding, cultivation, and field management. For an accurate pod phenotype description, a dynamic detection method is proposed based on an improved YOLO-v5 network. First, two varieties were taken as research objects. A self-developed field soybean three-dimensional color image acquisition vehicle was used to obtain RGB and depth images of soybean pods in the field. Second, the red–green–blue (RGB) and depth images were registered using an edge feature point alignment metric to accurately distinguish complex environmental backgrounds and establish a red–green–blue-depth (RGB-D) dataset for model training. Third, an improved feature pyramid network and path aggregation network (FPN+PAN) structure and a channel attention atrous spatial pyramid pooling (CA-ASPP) module were introduced to improve the dim and small pod target detection. Finally, a soybean pod quantity compensation model was established by analyzing the influence of the number of individual plants in the soybean population on the detection precision to statistically correct the predicted pod quantity. In the experimental phase, we analyzed the impact of different datasets on the model and the performance of different models on the same dataset under the same test conditions. The test results showed that compared with network models trained on the RGB dataset, the recall and precision of models trained on the RGB-D dataset increased by approximately 32% and 25%, respectively. Compared with YOLO-v5s, the precision of the improved YOLO-v5 increased by approximately 6%, reaching 88.14% precision for pod quantity detection with 200 plants in the soybean population. After model compensation, the mean relative errors between the predicted and actual pod quantities were 2% to 3% for the two soybean varieties. Thus, the proposed method can provide rapid and massive detection for pod phenotyping in soybean populations and a theoretical basis and technical knowledge for soybean breeding, scientific cultivation, and field management.

Funder

China Agriculture Research System of MOF and MARA

China College Students’ Innovation and Entrepreneurship Training Program

Talent Introduction Scientific Research Plan of Heilongjiang Bayi Agricultural University

Scientific Research Start-up Plan

Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3