Functional Annotation of Hypothetical Proteins Derived from Suppressive Subtraction Hybridization (SSH) Analysis Shows NPR1 (Non-Pathogenesis Related)-Like Activity

Author:

Chandrasekaran Murugesan,Raman Chandrasekar,Karthikeyan Kandasamy,Paramasivan Manivannan

Abstract

Fusarium wilt is considered the most devastating banana disease incited by Fusarium oxysporum f. sp. cubense (FOC). The present study addresses suppressive subtraction hybridization (SSH) analysis for differential gene expression in banana plant, mediated through FOC and its interaction with biocontrol agent Trichoderma asperellum (prr2). SSH analysis yielded a total of 300 clones. The resultant clones were sequenced and processed to obtain 22 contigs and 87 singleton sequences. BLAST2GO (Basic Local Alignment Search Tool 2 Gene Ontology) analysis was performed to assign known protein function. Initial functional annotation showed that contig 21 possesses p38-like endoribonuclease activity and duality in subcellular localization. To gain insights into its additional roles and precise functions, a sequential docking protocol was done to affirm its role in the defense pathway. Atomic contact energies revealed binding affinities in the order of miRNA > phytoalexins > polyubiquitin, emphasizing their role in the Musa defense pathway. Contig 21 and polyubiquitin showed an atomic contact energy value of −479.60 kJ/mol, and even higher atomic contact energies were observed for miRNA (−804.86, −482.28, −494.75 kJ/mol), demonstrating its high RNA-binding properties. Phytoalexin contig 21-interacting interfacial residues were identified as rigid (10)/non-rigid (2) based on Bi, N values, and B-factor per residue. Hence, based on these results, contig 21 was characterized as a NPR1 (non-pathogenesis-related protein) homolog that is involved in plant defense and systemic induced resistance.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3