Affiliation:
1. Faculty of Science, School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney 2006, Australia
2. Agriculture and Food/DATA61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra 2601, Australia
Abstract
Pendimethalin herbicide toxicity to rice plants and barnyard grass invasion have increasingly affected the productivity of direct-seeded rice (DSR) in the fields. Whether and how to promote DSR productivity and sustain weed management depend on the appropriate pre-emergence herbicide application rate to minimise its toxicity in the rice ecosystem. Pot experiments were conducted to determine the effects of pendimethalin rates (1.5, 1.75, 2.0 kg a.i. ha−1, two control treatments include the untreated control and the treated control with 1.5 kg a.i. ha−1 S-metolachlor) on barnyard grass (Echinochloa crus-galli (L.) Beaux) and their potential toxicity risk to photosynthetic performances of rice (Topaz and Sen pidao). All the pendimethalin treatments provided excellent control of barnyard grass. Among the treatments, 1.5, 1.75, 2.0 kg a.i. ha−1 pendimethalin and 1.5 kg a.i. ha−1 S-metolachlor (treated control) decreased leaf area of barnyard grass significantly by 38.9, 49.6, 49.6 and 46.2%, respectively, compared with the untreated control at 40 days after sowing (DAS). The above-ground biomass of barnyard grass significantly decreased by 40% (1.48 g plant−1) with 2.0 kg a.i. ha−1 pendimethalin and by 46.2% (1.33 g plant−1) when 1.5 kg a.i. ha−1S-metolachlor was applied at 40 DAS compared with the untreated pots. Higher pendimethalin rates increased toxicity in Topaz and Sen pidao varieties, and 2.0 kg a.i. ha−1 pendimethalin significantly reduced effective quantum yield (light-adapted) of photosystem (PS) II by 18% (0.58) and 19% (0.52), respectively, compared with the untreated control. Application of 2.0 kg a.i. ha−1 pendimethalin rate significantly decreased the maximum quantum yield (dark-adapted) of Sen pidao (0.66) compared with 1.5 kg a.i. ha−1 pendimethalin (0.68) including the untreated control. All pendimethalin treatments suppressed above-ground biomass at 55 DAS, but above-ground biomass of barnyard grass significantly decreased by 59.9% when 2.0 kg a.i. ha−1 pendimethalin was applied compared with the untreated control. Although application of 1.5 kg a.i. ha−1 pendimethalin rates reduced the effective quantum yield (light-adapted) of photosystem II of Sen pidao (0.55) by a small percentage (8%) than Topaz (0.65), it was non-toxic for both varieties compared with 2.0 kg a.i. ha−1 pendimethalin. Therefore, the use of 1.5 kg a.i. ha−1 pendimethalin can be used for effective weed management in the direct seeding of rice at an early growth stage.
Funder
Australian Centre for International Agricultural Research
Australian Plant Phenomics Facility (APPF) in CSIRO
Subject
Agronomy and Crop Science
Reference29 articles.
1. Effects of common Echinochloa varieties on grain yield and grain quality of rice;Zhang;Field Crop. Res.,2017
2. Holm, L.R.G., Plucknett, D.L., Pancho, J.V., and Herberger, J.P. (1977). The World’s Worst Weeds. Distribution and Biology, University Press of Hawaii.
3. Performance of different herbicides in dry-seeded rice in Bangladesh;Ahmed;Sci. World J.,2014
4. Response of weed flora to different herbicides in aerobic rice system;Rahman;Sci. Res. Essays,2012
5. Seeding rate, fertiliser and herbicide effects on canopy growth and productivity of direct-seeded rice (DSR) under different management practices;Roche;Field Crop. Res.,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献