Seedling Growth and Transcriptional Responses to Salt Shock and Stress in Medicago sativa L., Medicago arborea L., and Their Hybrid (Alborea)

Author:

Tani Eleni,Sarri Efi,Goufa Maria,Asimakopoulou Georgia,Psychogiou Maria,Bingham Edwin,Skaracis George,Abraham Eleni

Abstract

Salinity is a major limiting factor in crop productivity worldwide. Medicago sativa L. is an important fodder crop, broadly cultivated in different environments, and it is moderately tolerant of salinity. Medicago arborea L. is considered a stress-tolerant species and could be an important genetic resource for the improvement of M. sativa’s salt tolerance. The aim of the study was to evaluate the seedling response of M. sativa, M. arborea, and their hybrid (Alborea) to salt shock and salt stress treatments. Salt treatments were applied as follows: salt stress treatment at low dose (50 mM NaCl), gradual acclimatization at 50–100 and 50–100–150 mM NaCl, and two salt shock treatments at 100 and 150 mM NaCl. Growth rates were evaluated in addition to transcriptional profiles of representative genes that control salt uptake and transport (NHX1 and RCI2A), have an osmotic function (P5CS1), and participate in signaling pathways and control cell growth and leaf function (SIMKK, ZFN, and AP2/EREB). Results showed that the studied population of M. sativa and M. arborea performed equally well under salt stress, whereas that of M. sativa performed better under salt shock. The productivity of the studied population of Alborea exceeded that of its parents under normal conditions. Nevertheless, Alborea was extremely sensitive to all initial salt treatments except the low dose (50 mM NaCl). In addition, significantly higher expression levels of all the studied genes were observed in the population of M. arborea under both salt shock and salt stress. On the other hand, in the population of M. sativa, NHX1, P5CS1, and AP2/EREB were highly upregulated under salt shock but to a lesser extent under salt stress. Thus, the populations of M. sativa and M. arborea appear to regulate different components of salt tolerance mechanisms. Knowledge of the different parental mechanisms of salt tolerance could be important when incorporating both mechanisms in Alborea populations.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3