Soil Properties for Predicting Soil Mineral Nitrogen Dynamics Throughout a Wheat Growing Cycle in Calcareous Soils

Author:

Aranguren Marta,Aizpurua Ana,Castellón AnderORCID,Besga Gerardo,Villar Nerea

Abstract

A better understanding of the capacity of soils to supply nitrogen (N) to wheat can enhance fertilizer recommendations. The aim of this study was to assess the soil mineral N (Nmin) dynamics throughout the wheat growing season in crucial stages for the plant yield and grain protein content (GPC). To this aim, we evaluated the utility of different soil properties analyzed before sowing: (i) commonly used soil physicochemical properties, (ii) potentially mineralizable N or No (aerobic incubation), and (iii) different extraction methods for estimating No. A greenhouse experiment was established using samples from 16 field soils from northern Spain. Wheat N uptake and soil Nmin concentrations were determined at following growing stages (GS): sowing, GS30, GS37, GS60, harvest, post-harvest, and pre-sowing. Pearson’s correlation analysis of the soil properties, aerobic incubations and chemical extractions with the soil Nmin dynamics and N uptake, yield and GPC was performed. In addition, correlations were performed between Nmin and the N uptake, yield, and GPC. The dynamics of soil Nmin throughout the cropping season were variable, and thus, the crop N necessities were variable. The soil Nmin values in the early wheat growth stages were well correlated with the yield, and in the late stages, they were well correlated with GPC. N0 was correlated with the late N uptake and GPC. However, the chemical methods that avoid the long periods required for N0 determinations were not correlated with the N uptake in the late wheat growth stages or GPC. Conversely, clay was positively correlated with the late Nmin values and GPC. Chemical methods were unable to estimate the available soil N in the later stages of the growing cycle. Consequently, as incubation methods are too laborious for their widespread use, further research must be conducted.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3