Optimized Farmland Mulching Improves Rainfed Maize Productivity by Regulating Soil Temperature and Phenology on the Loess Plateau in China

Author:

Zhang Shibo12,Xia Zhenqing12ORCID,Zhang Guixin12,Bai Jingxuan12,Wu Mengke12,Lu Haidong12

Affiliation:

1. College of Agronomy, Northwest A&F University, Xianyang 712100, China

2. Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of Northwest Region, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China

Abstract

Owing to global warming, continuously increasing the grain yield of rainfed maize is challenging on the Loess Plateau in China. Plastic film mulching has been extensively utilized in dryland agriculture on the Loess Plateau. However, higher topsoil temperatures under film mulch caused rainfed-maize premature senescence and yield loss. Here, we aimed to explore the influence of topsoil temperature driven by novel double mulching patterns on rainfed maize productivity based on the excellent moisture conservation function of plastic film. A maize field experiment was conducted in two different areas, namely Changwu, a typical semi-arid area, and Yangling, a dry semi-humid area. The experiment followed a randomized block design with three replications. Five flat-planting practices were examined in 2021 and 2022: (1) bare land (CK), (2) transparent film mulching (PFM), (3) black film mulching (BFM), (4) double mulching of PFM with a black polyethylene net (PFM + BN), and (5) double mulching of PFM with whole maize stalks (PFM + ST). Soil hydrothermal conditions, maize growth dynamics, grain yield, water use efficiency (WUE), and economic returns were quantified under different mulching practices. Under double mulching treatments, topsoil temperatures were lower than PFM by 1.7–2.0 °C at the two sites (p < 0.05), whereas BFM was slightly lower than that of PFM by 0.6–0.7 °C at Yangling (p > 0.05). The average growth period for maize under double mulching was longer than that under PFM by 8–11 days at the two sites. Double mulching treatments significantly improved the leaf area index (LAI), chlorophyll relative content (SPAD), and aboveground biomass compared to CK and PFM during the late growth stage. Compared with PFM, average grain yield increased by 14.93%, 18.46%, and 16.45% in Changwu (p < 0.05) under BFM, PFM + BN, and PFM + ST, respectively, and by 2.71%, 24.55%, and 20.38% in Yangling. The corresponding WUEs also increased. Additionally, net income under BFM was higher than that under other treatments, and there were no significant (p > 0.05) differences between PFM + ST and BFM in Changwu. However, PFM + ST in net income averaged 10.72–52.22% higher than other treatments, and its output value was 19.51% higher in Yangling. In summary, smallholder farmers can adopt PFM + ST to improve rainfed-maize productivity in the Loess Plateau in China.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shaanxi Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3