Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal

Author:

Pinheiro Lisboa Izaias,Melo Damian Júnior,Roberto Cherubin MaurícioORCID,Silva Barros Pedro,Ricardo Fiorio Peterson,Cerri Carlos,Eduardo Pellegrino Cerri Carlos

Abstract

The total or partial removal of sugarcane (Saccharum spp. L.) straw for bioenergy production may deplete soil quality and consequently affect negatively crop yield. Plants with lower yield potential may present lower concentration of leaf-tissue nutrients, which in turn changes light reflectance of canopy in different wavelengths. Therefore, vegetation indexes, such as the normalized difference vegetation index (NDVI) associated with concentration of leaf-tissue nutrients could be a useful tool for monitoring potential sugarcane yield changes under straw management. Two sites in São Paulo state, Brazil were utilized to evaluate the potential of NDVI for monitoring sugarcane yield changes imposed by different straw removal rates. The treatments were established with 0%, 25%, 50%, and 100% straw removal. The data used for the NDVI calculation was obtained using satellite images (CBERS-4) and hyperspectral sensor (FieldSpec Spectroradiometer, Malvern Panalytical, Almelo, Netherlands). Besides sugarcane yield, the concentration of the leaf-tissue nutrients (N, P, K, Ca, and S) were also determined. The NDVI efficiently predicted sugarcane yield under different rates of straw removal, with the highest performance achieved with NDVI derived from satellite images than hyperspectral sensor. In addition, leaf-tissue N and P concentrations were also important parameters to compose the prediction models of sugarcane yield. A prediction model approach based on data of NDVI and leaf-tissue nutrient concentrations may help the Brazilian sugarcane sector to monitor crop yield changes in areas intensively managed for bioenergy production.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference68 articles.

1. FAO—Food and Agriculture Organizationhttp://faostat.fao.org/

2. REN21-Highlights of the REN21 Renewables 2017 Global Status Report in Perspectivehttp://www.ren21.net/wp-content/uploads/2017/06/GSR2017_Highlights_FINAL.pdf

3. Meeting the global demand for biofuels in 2021 through sustainable land use change policy

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3