Quantifying High-Temperature-Induced Injury in Nanfeng Tangerine Plants: Insights from Photosynthetic and Biochemical Mechanisms

Author:

Xu Chao123,Wang Yuting12,Yang Huidong12,Tang Yuqing12,Liu Xincheng1ORCID,Liu Buchun12,Hu Xinlong12,Hu Zhongdong12

Affiliation:

1. Jiangxi Key Laboratory of Horticultural Crops (Fruit, Vegetable & Tea) Breeding, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

2. Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

High temperatures significantly injure the flowering, pollination, fruit growth, and quality of plants. Photosynthesis, the fundamental process supporting plant life, is crucial. Nevertheless, the quantitative evaluation of the physiological activity of the photosynthetic system of Nanfeng tangerine (NT) plants under high-temperature conditions remains a challenge. This research utilized NT plants, a distinctive citrus variety in Jiangxi Province, as the experimental subject. The study investigated the effects of varying degrees of high-temperature stress and duration on 16 photosynthetic physiological parameters of NT plants. The study examined the impact of four varying high-temperature treatment levels (32/22 °C, 35/25 °C, 38/28 °C, and 41/31 °C) for durations of 2, 4, 6, and 8 days, respectively. Principal component analysis was utilized to identify the key indicators of photosynthetic physiological activity in NT plants, with Fv/Fm, Pmax, LCP, H2O2, MDA, and POD being selected as key parameters. The high-temperature stress index model previously constructed was used to calculate the high-temperature stress index value of the NT plants exposed to varying degrees and durations of high temperature, in order to provide a comprehensive assessment of the photosynthetic system of NT plants under high-temperature stress. Subsequently, the high-temperature stress levels were categorized into five levels based on the calculated values: Level 0 for 0 < HSI ≤ 2, Level 1 for 2 < HSI ≤ 4, Level 2 for 4 < HSI ≤ 6, Level 3 for 6 < HSI ≤ 8, and Level 4 for HSI > 8. The research results provide valuable data for agricultural meteorological departments to carry out disaster risk zoning and risk assessment in the future.

Funder

Jiangxi Provincial Natural Science Foundation

China Agriculture Research System

Earmarked Fund for Jiangxi Agriculture Research System

Breed Improvement Project of Nanfeng Tangrine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3