Soil Microbial Functions Linked Fragrant Rice 2-Acetyl-1-Pyrroline with Soil Active Carbon Pool: Evidence from Soil Metagenomic Sequencing of Tillage Practices

Author:

Huang Xiangwen123,Lin Jiajun1,Xie Qihuan1,Shi Jingdan1,Du Xiaoxu1,Pan Shenggang123,Tang Xiangru123ORCID,Qi Jianying123ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China

2. Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China

3. Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China

Abstract

Improved tillage management in fragrant rice cropping systems can enhance soil organic carbon (SOC) and the content of 2-Acetyl-1-Pyrroline (2-AP), a crucial volatile compound contributing to the aroma of fragrant rice. Despite this, the interplay between 2-AP content in fragrant rice and SOC metabolism, alongside the influences exerted by soil microbial functions, remains poorly understood. This study introduces a comprehensive 6-year field experiment which aims to correlate SOC with rice grain 2-AP content by analyzing soil microbial KEGG functions, such as carbon and amino acid metabolism, using metagenomic sequencing. The experiment assessed three tillage practices, conventional tillage (CT), reduced tillage (RT), and no tillage (NT), with soil samples collected on three dates in 2022. The results indicated that NT significantly (p < 0.05) enhanced SOC content and modified carbon metabolism by upregulating the Calvin cycle (K01601) and reducing hemicellulose degradation (K01710). Additionally, NT notably increased the soil levels of alkaline amino acids, such as histidine and ornithine, which were 165.17% and 1218.42% higher, respectively, than those in CT, possibly linked to an increase in soil pH. Furthermore, the 2-AP content in fragrant rice under NT was significantly higher by 52.02% and 13.90% compared to under RT and CT, respectively. NT also upregulated K00250 (alanine, aspartate, and glutamate metabolism) and K00290 (valine, leucine, and isoleucine biosynthesis), leading to significantly higher levels of 2-AP biosynthesis-related amino acids proline and glutamate in fragrant rice grain. This study links SOC and 2-AP biosynthesis via soil microbial functions, presenting a novel strategy for improving the quality of fragrant rice through soil management practices.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3