Genetics of Height and Branching in Faba Bean (Vicia faba)

Author:

Hughes Jessa,Khazaei HamidORCID,Vandenberg Albert

Abstract

A better understanding of the genetics of plant architecture, including height and branching, could improve faba bean breeding for varieties with better fit into specific cropping systems. This study aimed to determine the inheritance and genetic interactions of the sources of the dwarf gene (dwf1) and semi-dwarf gene (dwarf1), and to investigate the genetics of branching in the faba bean. We chose inbred lines IG 12658 (dwarf, carrying dwf1) and Rinrei (semi-dwarf, carrying dwarf1) along with Aurora/2 and IG 114476 as sources of non-dwarf faba bean genotypes and crossed them (Aurora/2 × IG 12658, IG 114476 × IG 12658, Rinrei × IG 12658, IG 114476 × Rinrei, and Rinrei × Aurora/2). IG 114476 was also used as a genetic source of a highly branching phenotype and crossed with IG 12658, Rinrei, and Aurora/2 to study the genetics of branching. Parental lines, F1s, and F2 populations were evaluated under growth chamber and field conditions in 2018. The segregating F2 populations were tested for 3:1 single recessive gene inheritance using Chi-square tests. Both dwarfing/semi-dwarfing genes fit 3:1 recessive, and 15:1 for double recessive. Rinrei was not a true dwarf, and the gene creating the dwarf appearance reduced the initial growth rate, but this corrected over time. Multiple F2 populations were also tested for a 3:1 single dominant gene hypothesis for highly branched phenotypes. These populations showed a bell-shaped phenotypic distribution for branch number, with no discernable classes, and revealed that branching was likely quantitatively controlled. In conclusion, dwarfism and branching in faba bean were controlled qualitatively and quantitatively, respectively.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference37 articles.

1. The genes of the Green Revolution

2. Genetics and genetic modifications of plant architecture in grain legumes: a review

3. Breeding field beans;Bond;Plant Breed.,1962

4. Induced morphological variation in Vicia faba L.

5. ICARDA (International Center for Agricultural Research in the Dry Areas),1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3