Development of a Predictive Model of the Flight Dynamics of the European Corn Borer, Ostrinia nubilalis Hübner, 1796 (Lepidoptera: Pyralidae), in the Vojvodina Region, Serbia—Implications for Integrated Pest Management

Author:

Ivezić Aleksandar1,Mimić Gordan1ORCID,Trudić Branislav2,Blagojević Dragana1ORCID,Kuzmanović Boris3ORCID,Kaitović Željko4,Petrović Kristina14ORCID

Affiliation:

1. BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia

2. Forest Biodiversity and Restoration Team, Forestry Division, Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy

3. Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia

4. Maize Research Institute “Zemun Polje”, Slobodana Bajića 1, 11185 Beograd, Serbia

Abstract

Although corn production is affected by several harmful insects, its most important pest in the southeastern region of Europe is the European corn borer (ECB), Ostrinia nubilalis Hübner, 1796 (Lepidoptera: Pyralidae). Chemical control of O. nubilalis remains the main strategy in conventional corn production. The key to successfully achieving a high efficiency of insecticides is determining the appropriate moment of application, including the exact time in the insect’s life cycle when it is most vulnerable. In this study, monitoring data on the flight dynamics of ECB adults from a seven-year period (2014–2020) were exploited for the development of a predictive model of adult numbers within the growing season. ECB monitoring was performed by using light traps at 15 different locations in the Vojvodina region (Serbia) during the specified time period. First, the calendar for Vojvodina was created based on the analytics of the collected monitoring data. Additionally, the calendar was converted to the probability of ECB occurrence during the growing season, specifying the time interval between the appearance of each generation of the pest. Second, using machine learning techniques, a phenological model was designed that included daily values of relevant meteorological features, such as cumulative degree-days, relative humidity, and precipitation. The calendar had a lower prediction error when compared to the phenological model, and it was tested as a supporting management tool for the ECB in 2021, with a root-mean-square error of the number of adults of 46.67. Such an approach could significantly reduce both the consumption of insecticides and the number of chemical treatments, respectively. Above all, this approach has broad potential in IPM and organic farming, and it is fully compatible with biological control methods.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Horizon Europe CREDIT Vibes project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference44 articles.

1. Ivović, D. (2015). Suzbijanje Kukuruznog Plamenca (Ostrinia nubilalis Hbn.) u Usevu Semenskog Kukuruza, Univerzitet u Novom Sadu, Poljoprivredni Fakultet, Departman za Fitomedicinu i Zaštitu Životne Sredine.

2. Čamprag, D. (2000). Integralna Zaštita Ratarskih Kultura od Štetočina, Poljoprivredni Fakultet Novi Sad, Institut za Zaštitu Bilja i Životne Sredine“Dr Pavle Vukasović”.

3. Čamprag, D. (2002). Štetočine Kukuruza. Bolesti, Štetočine i Korovi Kukuruza i Njihovo Suzbijanje, DOO Školska knjiga.

4. Čamprag, D., Krnjaić, Đ., Maceljski, M., Maček, J., Marić, A., and Vrabl, S. (1983). Priručnik Izveštajne i Prognozne Službe Zaštite Poljoprivrednih Kultura, Savez Društava za Zaštitu Bilja Jugoslavije.

5. Čamprag, D., Sekulić, R., Kereši, T., and Bača, F. (2004). Kukuruzna Sovica (Helicoverpa armigera Hübner) i Integralne Mere Suzbijanja, Poljoprivredni Fakultet, Institut za Zaštitu Bilja i Životne Sredine “Dr Pavle Vukasović”.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3