IIIVmrMLM Provides New Insights into the Genetic Basis of the Agronomic Trait Variation in Chickpea

Author:

Duk Maria12,Kanapin Alexander1ORCID,Orlova Ekaterina1,Samsonova Maria1

Affiliation:

1. Institute for Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Str., 195251 St. Petersburg, Russia

2. Sector for Theory of Solids, Ioffe Institute, 26, Polytekhnicheskaya Str., 194021 St. Petersburg, Russia

Abstract

Chickpea is a staple crop for many nations worldwide. Modeling genotype-by-environment interactions and assessing the genotype’s ability to contribute adaptive alleles are crucial for chickpea breeding. In this study, we evaluated 12 agronomically important traits of 159 accessions from the N.I. Vavilov All Russian Institute for Plant Genetic Resources collection. These included 145 landraces and 13 cultivars grown in different climatic conditions in Kuban (45°18′ N and 40°52′ E) in both 2016 and 2022, as well as in Astrakhan (46°06′ N and 48°04′ E) in 2022. Using the IIIVmrMLM model in multi-environmental mode, we identified 161 quantitative trait nucleotides (QTNs) with stable genetic effects across different environments. Furthermore, we have observed 254 QTN-by-environment interactions with distinct environment-specific effects. Notably, five of these interactions manifested large effects, with R2 values exceeding 10%, while the highest R2 value for stable QTNs was 4.7%. Within the protein-coding genes and their 1 Kb flanking regions, we have discerned 22 QTNs and 45 QTN-by-environment interactions, most likely tagging the candidate causal genes. The landraces obtained from the N.I Vavilov All Russian Institute for Plant Genetic Resources collection exhibit numerous favorable alleles at quantitative trait nucleotide loci, showing stable effects in the Kuban and Astrakhan regions. Additionally, they possessed a significantly higher number of Kuban-specific favorable alleles of the QTN-by-environment interaction loci compared to the Astrakhan-specific ones. The environment-specific alleles found at the QTN-by-environment interaction loci have the potential to enhance chickpea adaptation to specific climatic conditions.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation as part of a World-class Research Center program: Advanced Digital Technologies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3