Potential Roles of Three ABCB Genes in Quinclorac Resistance Identified in Echinochloa crus-galli var. zelayensis

Author:

Qi YuanlinORCID,Guo Yongli,Liu Xudong,Gao Yuan,Sun Yu,Dong Liyao,Li Jun

Abstract

Echinochloa crus-galli var. zelayensis is a variant of E. crus-galli (L) Beauv, and it is the most pernicious weed in the east of China. Quinclorac, as synthetic auxin herbicide, could control this kind of weed effectively. In this study, two populations were used to further research the mechanism of quinclorac resistance, and the EcABCB1, EcABCB4 and EcABCB19 was functionally characterized to determine their roles in quinclorac resistance. It was found that root growth of quinclorac-resistant biotype SSXB-R was less inhibited by quinclorac at 5 μM and 50 μM when compared with the susceptible biotype JNNX-S. The results show that the IAA variations in root tip of JNNX-S were significantly higher than SSXB-R at 12 h after treatment with quinclorac (50 μM) and 1-N-naphthylthalamic acid (100 μM). There are no significant differences in IAA variations of the basal part of the root between susceptible and resistant biotypes after treatment with quinclorac and 1-N-naphthylthalamic acid (NPA). The transcript level of EcABCB1 and EcABCB19 in the root of JNNX-S showed down-regulated and up-regulated after treatment with quinclorac (TWQ) at 6 h in susceptible and resistant biotypes compared with control, respectively. The transcript level for EcABCB4 in the root showed up-regulated after TWQ at 12 h only in susceptible biotypes compared with control. It was found that the IC50 to quinclorac of AtABCB4 and AtABCB19 mutants were significantly higher than the parent line Col-0.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3