Investigating the Spatial Structure of Soil Hydraulic Properties in a Long-Term Field Experiment Using the BEST Methodology

Author:

Popolizio StefanoORCID,Barca EmanueleORCID,Castellini MirkoORCID,Montesano Francesco F.,Stellacci Anna MariaORCID

Abstract

Understanding the spatial structure of soil properties at field scale and introducing this information into appropriate data analysis methods can help in detecting the effects of different soil management practices and in supporting precision agriculture applications. The objectives of this study were: (i) assessing the spatial structure of soil physical and hydraulic properties in a long-term field experiment; (ii) defining a set of spatial indicators for gaining an integrated view of the studied system. In seventy-two georeferenced locations, soil bulk density (BD), initial volumetric soil water content (θi) and cumulative infiltration curve as function of the time (I(t)) were measured. The soil water retention curve (θ(h)) and the hydraulic conductivity function (K(h)) were then estimated using the Beerkan Estimation of Soil Transfer parameters (BEST) methodology. The volumetric soil water contents at soil matrix (h = −10 cm), field capacity (h = −100 cm) and wilting point (h = −15,300 cm) were considered. In addition, a set of capacitive indicators—plant available water capacity (PAWCe), soil macroporosity (PMACe), air capacity (ACe) and relative field capacity (RFCe)—were computed. The data were first analyzed for overall spatial dependence and then processed through variography for structural analysis and subsequent spatial interpolation. Cross-correlation analysis allowed for assessing the spatial relationships between selected physical and hydraulic properties. On average, optimal soil physical quality conditions were recorded; only PMACe values were indicative of non-optimal conditions, whereas mean values of all the other indicators (BD, Ks, PAWCe, ACe, RFCe) fell within optimal ranges. The exponential model was found to be the best function to describe the spatial variability of all the considered variables, except ACe. A good spatial dependence was found for most of the investigated variables and only BD, ACe and Ks showed a moderate autocorrelation. Ks was confirmed to be characterized by a relatively high spatial variability, and thus, to require a more intensive spatial sampling. An inverse spatial cross-correlation was observed between BD and Ks up to a distance of 10 m; significant cross-correlations were also recorded between Ks and PMACe and ACe. This result seems to suggest the possibility to use these soil physical quality indicators as covariates in predictive multivariate approaches.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3