Identification and Fine Mapping of a Quantitative Trait Locus Controlling the Total Flower and Pod Numbers in Soybean

Author:

Sun Xia,Sun Xiaohuan,Pan Xiangwen,Zhang Hengyou,Wang Yanping,Ren Haixiang,Wang Feifei

Abstract

Total flower and pod numbers (TFPN) and effective pod numbers per plant (PNPP) are among the most important agronomic traits for soybean production. However, the underlying genetic mechanism remains unclear. In this study, we constructed a recombinant inbred line population derived from a cross between JY73 (high TFPN) and TJSLH (low TFPN) to map loci for the two traits. In total, six QTL for TFPN and five QTL for PNPP were identified, among which a QTL on chromosome 4, named qFPN4, explained 9.2% and 9.6% of the phenotypic variation of TFPN and PNPP, respectively. Analysis of residual heterozygous lines for qFPN4 indicated that TFPN or PNPP was controlled by a single dominant gene at this locus and delimited the QTL into a ~2.62 Mb interval which tightly linked to an Indel marker C1-5. This mapping result was further confirmed by bulked segregant analysis (BSA) of the near isogenic lines. The genome-sequencing-based BSA also identified eight candidate genes carrying nonsynonymous SNPs and/or Indels; two genes, Glyma.04G176600 and Glyma.04G178900, were nominated as the most promising genes for qFPN4 based on additional expression and function analysis. These results improve our understanding of the genetic mechanism of TFPN and PNPP and indicate the potential for soybean yield improvement.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3