Primary Mechanical Modification to Improve Performance of Miscanthus as Stand-Alone Growing Substrates

Author:

Nguyen Van T. H.ORCID,Kraska ThorstenORCID,Winkler Winona,Aydinlik Sercan,Jackson Brian E.,Pude RalfORCID

Abstract

Selecting proper mechanical processing can improve performance of miscanthus substrates. We studied the effects of mechanical processing methods on substrate morphology, hydrological properties, pH, and nitrogen immobilization. Miscanthus × giganteus biomass was processed into field chips (FC, forage harvester), shreds (S5, mechanical fraying machine through a 5-mm screen) and chips (C15, C10, C5 and C3, hammermill with screen size of 15, 10, 5, or 3 mm). Processed miscanthus materials were also tested as propagation substrates for Chinese cabbage seedlings. Results showed that particle size distribution of miscanthus substrates formed four groups in ascending order of particle size: C3 < C5 < (C10, C15, S5) < FC. The finer miscanthus substrates had higher water holding capacity following the same groupings in particle size. The hydrophobicity of processed miscanthus was low and reversible, with the increasing order of risk as C3 < C5 < C10, C15 < S5, FC. All miscanthus substrates had similar and low pH buffering capacity. Nitrogen immobilization was similar among miscanthus substrates. The seedlings in miscanthus substrates had similar germination rates but a lower biomass compared to those grown in peat and coir. Primary mechanical modification of miscanthus offers opportunities for different sizes of substrate materials with few changes to the physical or chemical properties tested in this work.

Funder

Katholischer Akademischer Ausländer-Dienst

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3