Abstract
Positive effects of a biochar–compost mix on soil nutrient status in infertile soil have been reported, but the potential effect of biochar amendments in excessive compost-fertilized soils has not been extensively studied. Excessive application of compost can result in the accumulation of nutrients and heavy metals (Cu and Zn). Thus, the objective of this study is to investigate the effect of biochar–excessive compost co-application on soil nutrient status. We hypothesized that biochar co-application could have positive effects on the absorption of excessive nutrients of Cu and Zn. A 371-day laboratory incubation study was conducted to evaluate the effects of the lead tree (Leucaena leucocephala (Lam.) de. Wit) biochar produced at 750 °C on the dynamics of the soil nutrients. Three Taiwan rural soils were selected, including slightly acidic Oxisols (SAO), mildly alkaline Inceptisols (MAI), and slightly acid Inceptisols (SAI). The biochar treatments include control (0%) and 0.5%, 1.0%, and 2.0% (w/w). In each treatment, 5% (w/w) poultry-livestock manure compost was added to test excessive application. The results indicated that the biochar treatments had a significant increase effect on soil pH, total carbon (TC), total nitrogen (TN), C:N ratio, and available K concentration. The effect of biochar on electrical conductivity (EC) and available P, Ca, Mg, Fe, Mn, Cu, Pb, and Zn was insignificant. The effect of biochar, with relatively low application rates (<2% by wt), low surface area, and less surface function group, was eliminated by excessive compost (5% by wt). In addition to carbon sequestration and nitrogen conservation, biochar addition has no effect on the absorption of the excessive nutrients Cu and Zn in three studied soils.
Subject
Agronomy and Crop Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献