Salt-Induced Autophagy and Programmed Cell Death in Wheat

Author:

Fedoreyeva Larisa I.,Lazareva Elena M.,Shelepova Olga V.,Baranova Ekaterina N.ORCID,Kononenko Neonila V.ORCID

Abstract

The high salinity of soil salts limits plant growth. Wheat is sensitive to toxic levels of mineral salts. Salinity leads to the accumulation of toxic ions in all organs of wheat. Depending on the level of ion accumulation, wheat is defined as salt stress-tolerant or -sensitive. The wheat variety Zolotaya accumulated Cl− and Na+ ions to a greater extent than the Orenburgskaya 22 variety. The accumulation of toxic ions was accompanied by an increase in ROS and an increase in damage to root tissues up to 80% in the Zolotaya variety. The formation of autophagosomes is considered a defense mechanism against abiotic stresses in plants. At a concentration of 150 mM NaCl, an increase in the expression level of TOR, which is a negative regulator of the formation of autophagosomes, occurred. The level of TOR expression in the Zolotaya variety was 2.8 times higher in the roots and 3.8 times higher in the leaves than in the Orenburgskaya 22 variety. Under the action of salinity, homeostasis was disturbed in the root cells and ROS production accumulated. In the unstable variety Zolotaya, ROS was found in the cap zone and the root meristem in contrast to the resistant variety Orenburgskaya 22 in which ROS production was found only in the cap zone. Accumulation of ROS production triggered autophagy and PCD. PCD markers revealed DNA breaks in the nuclei and metaphase chromosomes, cells with a surface location of phosphatidylserine, and the release of cytochrome c into the cytoplasm, which indicates a mitochondrial pathway for the death of part of the root cells during salinity. Based on electron microscopy data, mitophagy induction was revealed in wheat root and leaf cells under saline conditions.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3